1985 AJHSME Problems/Problem 4: Difference between revisions
5849206328x (talk | contribs) m →See Also: categorized the problem |
|||
| (20 intermediate revisions by 6 users not shown) | |||
| Line 19: | Line 19: | ||
</asy> | </asy> | ||
==Solution 1== | |||
<asy> | <asy> | ||
| Line 53: | Line 51: | ||
<math>\boxed{\text{C}}</math> | <math>\boxed{\text{C}}</math> | ||
==Solution 2== | |||
<asy> | <asy> | ||
| Line 92: | Line 90: | ||
This is answer choice <math>\boxed{\text{C}}</math> | This is answer choice <math>\boxed{\text{C}}</math> | ||
== Solution 3 (Weird Divisions) == | |||
<asy> | |||
draw((0,9)--(6,9)--(6,0)--(2,0)--(2,4)--(0,4)--cycle); | |||
draw((0,4)--(6,9),dashed); | |||
draw((2,4)--(6,9),dashed); | |||
label("A",(0,9),NW); | |||
label("B",(6,9),NE); | |||
label("C",(6,0),SE); | |||
label("D",(2,0),SW); | |||
label("E",(2,4),SW); | |||
label("F",(0,4),SW); | |||
</asy> | |||
The area of <math>\Delta ABF</math> is <math>15</math> | |||
The area of <math>\Delta BFE</math> is <math>\frac{1}{2} \times FE \times AF</math> or <math>5</math> | |||
The area of quadrilateral <math>BEDC</math> is <math>\frac{1}{2} \times (DE + BC) \times DC</math> or <math>26</math> | |||
Thus, the area is <math>46</math> or <math>\boxed{\textbf{(C)}\ 46}</math> | |||
~ lovelearning999 | |||
==Video Solution by BoundlessBrain!== | |||
https://youtu.be/-_r5GzafCUY | |||
==Video Solution== | |||
https://youtu.be/9OHRebmMyz4 | |||
~savannahsolver | |||
==See Also== | ==See Also== | ||
{{AJHSME box|year=1985|num-b=3|num-a=5}} | |||
[[Category:Introductory Geometry Problems]] | [[Category:Introductory Geometry Problems]] | ||
{{MAA Notice}} | |||
Latest revision as of 21:39, 2 October 2024
Problem
The area of polygon
, in square units, is
Solution 1
Obviously, there are no formulas to find the area of such a messed up shape, but we do recognize some shapes we do know how to find the area of.
If we continue segment
until it reaches the right side at
, we create two rectangles - one on the top and one on the bottom.
We know how to find the area of a rectangle, and we're given the sides! We can easily find that the area of
is
. For the rectangle on the bottom, we do know the length of one of its sides, but we don't know the other.
Note that
, and
, so we must have
The area of the bottom rectangle is then
Finally, we just add the areas of the rectangles together to get
.
Solution 2
Let
be the area of polygon
. Also, let
be the intersection of
and
when both are extended.
Clearly,
Since
and
,
.
To compute the area of
, note that
We know that
,
,
, and
, so
Thus
Finally, we have
This is answer choice
Solution 3 (Weird Divisions)
The area of
is
The area of
is
or
The area of quadrilateral
is
or
Thus, the area is
or
~ lovelearning999
Video Solution by BoundlessBrain!
Video Solution
~savannahsolver
See Also
| 1985 AJHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 3 |
Followed by Problem 5 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing