2018 AMC 12A Problems/Problem 14: Difference between revisions
MRENTHUSIASM (talk | contribs) Reconstructed Sol 1. |
MRENTHUSIASM (talk | contribs) |
||
| (13 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
The | The solution to the equation <math>\log_{3x} 4 = \log_{2x} 8</math>, where <math>x</math> is a positive real number other than <math>\frac{1}{3}</math> or <math>\frac{1}{2}</math>, can be written as <math>\frac {p}{q}</math> where <math>p</math> and <math>q</math> are relatively prime positive integers. What is <math>p + q</math>? | ||
<math>\textbf{(A) } 5 \qquad | <math>\textbf{(A) } 5 \qquad | ||
| Line 17: | Line 17: | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
By the logarithmic identity <math>n\log_b{a}=\log_b{\left(a^n\right)},</math> it follows that | By the logarithmic identity <math>n\log_b{a}=\log_b{\left(a^n\right)},</math> it follows that | ||
< | <cmath>\begin{align*} | ||
\log_2{\left[(3x)^3\right]}&=\log_2{\left[(2x)^2\right]} \\ | \log_2{\left[(3x)^3\right]}&=\log_2{\left[(2x)^2\right]} \\ | ||
(3x)^3&=(2x)^2\\ | (3x)^3&=(2x)^2 \\ | ||
27x^3&=4x^2 \\ | 27x^3&=4x^2 \\ | ||
x&=\frac{4}{27}, | x&=\frac{4}{27}, | ||
\end{align*} | \end{align*}</cmath> | ||
from which the answer is <math>4+27=\boxed{\textbf{(D) } 31}.</math> | from which the answer is <math>4+27=\boxed{\textbf{(D) } 31}.</math> | ||
| Line 30: | Line 30: | ||
==Solution 2== | ==Solution 2== | ||
We will apply the following logarithmic identity: | |||
<cmath>\log_{p^n}{\left(q^n\right)}=\log_{p}{q},</cmath> | |||
which can be proven by the Change of Base Formula: <cmath>\log_{p^n}{\left(q^n\right)}=\frac{\log_{p}{\left(q^n\right)}}{\log_{p}{\left(p^n\right)}}=\frac{n\log_{p}{q}}{n}=\log_{p}{q}.</cmath> | |||
We rewrite the original equation as <math>\log_{(3x)^3} 64 = \log_{(2x)^2} 64,</math> from which | |||
<cmath>\begin{align*} | |||
(3x)^3&=(2x)^2 \\ | |||
27x^3&=4x^2 \\ | |||
x&=\frac{4}{27}. | |||
\end{align*}</cmath> | |||
Therefore, the answer is <math>4+27=\boxed{\textbf{(D) } 31}.</math> | |||
~MRENTHUSIASM | |||
==Solution 3== | ==Solution 3== | ||
By the logarithmic identity <math>n\log_b{a}=\log_b{\left(a^n\right)},</math> the original equation becomes <cmath>2\log_{3x} 2 = 3\log_{2x} 2.</cmath> | |||
By the logarithmic identity <math>\log_b{a}\cdot\log_a{b}=1,</math> we multiply both sides by <math>\log_2{(2x)},</math> then apply the Change of Base Formula to the left side: | |||
<cmath>\begin{align*} | |||
2\left[\log_{3x}2\right]\left[\log_2{(2x)}\right] &= 3 \\ | |||
2\left[\frac{\log_2 2}{\log_2{(3x)}}\right]\left[\frac{\log_2{(2x)}}{\log_2 2}\right] &= 3 \\ | |||
2\left[\frac{\log_2{(2x)}}{\log_2{(3x)}}\right] &=3 \\ | |||
2\left[\log_{3x}{(2x)}\right] &= 3 \\ | |||
\log_{3x}{\left[(2x)^2\right]} &= 3 \\ | |||
(3x)^3&=(2x)^2 \\ | |||
27x^3&=4x^2 \\ | |||
x&=\frac{4}{27}. | |||
\end{align*}</cmath> | |||
Therefore, the answer is <math>4+27=\boxed{\textbf{(D) } 31}.</math> | |||
~Pikachu13307 (Fundamental Logic) | |||
~MRENTHUSIASM (Reconstruction) | |||
==Solution 4== | ==Solution 4== | ||
<math>\log_{3x} | We can convert both <math>4</math> and <math>8</math> into <math>2^2</math> and <math>2^3,</math> respectively: <cmath>2\log_{3x} (2) = 3\log_{2x} (2).</cmath> | ||
Converting the bases of the right side, we get | |||
<cmath>\begin{align*} | |||
\log_{2x} 2 &= \frac{\ln 2}{\ln (2x)} \\ | |||
\frac{2}{3}\cdot\log_{3x} (2) &= \frac{\ln 2}{\ln (2x)} \\ | |||
2^\frac{2}{3} &= (3x)^\frac{\ln 2}{\ln (2x)} \\ | |||
\frac{2}{3} \cdot \ln 2 &= \frac{\ln 2}{\ln (2x)} \cdot \ln (3x). | |||
\end{align*}</cmath> | |||
Dividing both sides by <math>\ln 2,</math> we get <math>\frac{2}{3} = \frac{\ln (3x)}{\ln (2x)},</math> from which <cmath>2\ln (2x) = 3\ln (3x).</cmath> | |||
Expanding this equation gives | |||
<cmath>\begin{align*} | |||
2\ln 2 + 2\ln (x) &= 3\ln 3 + 3\ln (x) \\ | |||
\ln (x) &= 2\ln 2 - 3\ln 3. | |||
\end{align*}</cmath> | |||
Thus, we have <cmath>x = e^{2\ln 2 - 3\ln 3} = \frac{e^{2\ln 2}}{e^{3\ln 3}} = \frac{2^2}{3^3} = \frac{4}{27},</cmath> | |||
from which the answer is <math>4+27=\boxed{\textbf{(D) } 31}.</math> | |||
~lepetitmoulin (Solution) | |||
~MRENTHUSIASM (Reformatting) | |||
<math>\ | ==Solution 5 (Exponential Form)== | ||
Let <math>y=\log_{3x} 4 = \log_{2x} 8.</math> We convert the equations with <math>y</math> to the exponential form: | |||
<cmath>\begin{align*} | |||
(3x)^y&=4, \\ | |||
(2x)^y&=8. | |||
\end{align*}</cmath> | |||
Cubing the first equation and squaring the second equation, we have | |||
<cmath>\begin{align*} | |||
(3x)^{3y}&=64, \\ | |||
(2x)^{2y}&=64. | |||
\end{align*}</cmath> | |||
Applying the Transitive Property, we get | |||
<cmath>\begin{align*} | |||
(3x)^{3y}&=(2x)^{2y} \\ | |||
(3x)^3&=(2x)^2 \\ | |||
27x^3&=4x^2 \\ | |||
x&=\frac{4}{27}, | |||
\end{align*}</cmath> | |||
from which the answer is <math>4+27=\boxed{\textbf{(D) } 31}.</math> | |||
~MRENTHUSIASM | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2018|ab=A|num-b=13|num-a=15}} | {{AMC12 box|year=2018|ab=A|num-b=13|num-a=15}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 11:37, 23 July 2024
Problem
The solution to the equation
, where
is a positive real number other than
or
, can be written as
where
and
are relatively prime positive integers. What is
?
Solution 1
We apply the Change of Base Formula, then rearrange:
By the logarithmic identity
it follows that
from which the answer is
~jeremylu (Fundamental Logic)
~MRENTHUSIASM (Reconstruction)
Solution 2
We will apply the following logarithmic identity:
which can be proven by the Change of Base Formula:
We rewrite the original equation as
from which
Therefore, the answer is
~MRENTHUSIASM
Solution 3
By the logarithmic identity
the original equation becomes
By the logarithmic identity
we multiply both sides by
then apply the Change of Base Formula to the left side:
Therefore, the answer is
~Pikachu13307 (Fundamental Logic)
~MRENTHUSIASM (Reconstruction)
Solution 4
We can convert both
and
into
and
respectively:
Converting the bases of the right side, we get
Dividing both sides by
we get
from which
Expanding this equation gives
Thus, we have
from which the answer is
~lepetitmoulin (Solution)
~MRENTHUSIASM (Reformatting)
Solution 5 (Exponential Form)
Let
We convert the equations with
to the exponential form:
Cubing the first equation and squaring the second equation, we have
Applying the Transitive Property, we get
from which the answer is
~MRENTHUSIASM
See Also
| 2018 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 13 |
Followed by Problem 15 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing