2013 AIME II Problems/Problem 10: Difference between revisions
Mathkidmom (talk | contribs) |
|||
| (One intermediate revision by one other user not shown) | |||
| Line 3: | Line 3: | ||
Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | ||
==Solution 1== | ==Solution 1 (Coordbash)== | ||
<asy> | <asy> | ||
import math; | import math; | ||
| Line 24: | Line 24: | ||
Now we put the figure in the Cartesian plane, let the center of the circle <math>O (0,0)</math>, then <math>B (\sqrt{13},0)</math>, and <math>A(4+\sqrt{13},0)</math> | Now we put the figure in the Cartesian plane, let the center of the circle <math>O (0,0)</math>, then <math>B (\sqrt{13},0)</math>, and <math>A(4+\sqrt{13},0)</math> | ||
The equation for Circle O is <math>x^2+y^2=13</math>, and let the slope of the line<math>AKL</math> be <math>k</math>, then the equation for line<math>AKL</math> is <math>y=k(x-4-\sqrt{13})</math>. | The equation for Circle O is <math>x^2+y^2=13</math>, and let the slope of the line <math>AKL</math> be <math>k</math>, then the equation for line <math>AKL</math> is <math>y=k(x-4-\sqrt{13})</math>. | ||
Then we get <math>(k^2+1)x^2-2k^2(4+\sqrt{13})x+k^2\cdot (4+\sqrt{13})^2-13=0</math>. According to [[Vieta's Formulas]], we get | Then we get <math>(k^2+1)x^2-2k^2(4+\sqrt{13})x+k^2\cdot (4+\sqrt{13})^2-13=0</math>. According to [[Vieta's Formulas]], we get | ||
Latest revision as of 21:42, 15 June 2024
Problem
Given a circle of radius
, let
be a point at a distance
from the center
of the circle. Let
be the point on the circle nearest to point
. A line passing through the point
intersects the circle at points
and
. The maximum possible area for
can be written in the form
, where
,
,
, and
are positive integers,
and
are relatively prime, and
is not divisible by the square of any prime. Find
.
Solution 1 (Coordbash)
Now we put the figure in the Cartesian plane, let the center of the circle
, then
, and
The equation for Circle O is
, and let the slope of the line
be
, then the equation for line
is
.
Then we get
. According to Vieta's Formulas, we get
, and
So,
Also, the distance between
and
is
So the area
Then the maximum value of
is
So the answer is
.
Solution 2
Draw
perpendicular to
at
. Draw
perpendicular to
at
.
Therefore, to maximize area of
, we need to maximize area of
.
So when area of
is maximized,
.
Eventually, we get
So the answer is
.
Solution 3 (simpler solution)
A rather easier solution is presented in the Girls' Angle WordPress:
http://girlsangle.wordpress.com/2013/11/26/2013-aime-2-problem-10/
Solution 4
Let
les on
such that
, call
We call
By similar triangle, we have
. Then, we realize the area is just
As
. Now, we have to maximize
, which is obviously reached when
, the answer is
leads to
~bluesoul
Solution 5
Let C and D be the base of perpendiculars dropped from points O and B to AK. Denote BD = h, OC = H.
is the base of triangles
and
const
The maximum possible area for
and
are at the same position of point
.
has sides
in the case
It is possible – if we rotate such triangle, we can find position when
lies on
vladimir.shelomovskii@gmail.com, vvsss
See Also
| 2013 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 9 |
Followed by Problem 11 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing