2017 USAJMO Problems/Problem 5: Difference between revisions
→Solution 1: added diagram |
|||
| (5 intermediate revisions by 3 users not shown) | |||
| Line 3: | Line 3: | ||
Let <math>O</math> and <math>H</math> be the circumcenter and the orthocenter of an acute triangle <math>ABC</math>. Points <math>M</math> and <math>D</math> lie on side <math>BC</math> such that <math>BM = CM</math> and <math>\angle BAD = \angle CAD</math>. Ray <math>MO</math> intersects the circumcircle of triangle <math>BHC</math> in point <math>N</math>. Prove that <math>\angle ADO = \angle HAN</math>. | Let <math>O</math> and <math>H</math> be the circumcenter and the orthocenter of an acute triangle <math>ABC</math>. Points <math>M</math> and <math>D</math> lie on side <math>BC</math> such that <math>BM = CM</math> and <math>\angle BAD = \angle CAD</math>. Ray <math>MO</math> intersects the circumcircle of triangle <math>BHC</math> in point <math>N</math>. Prove that <math>\angle ADO = \angle HAN</math>. | ||
==Solution== | ==Solution 1== | ||
<asy> | |||
import olympiad; | |||
unitsize(100); | |||
pair pA = dir(120); | |||
pair pB = dir(225); | |||
pair pC = dir(315); | |||
pair pO = origin; | |||
pair pH = orthocenter(pA, pB, pC); | |||
pair pM = midpoint(pB--pC); | |||
pair dD = bisectorpoint(pB, pA, pC); | |||
pair pD = extension(pA, dD, pB, pC); | |||
pair pN = intersectionpoints(pM--(3*pO-2*pM), circumcircle(pB, pH, pC))[0]; | |||
pair dHprime = foot(pH, pB, pC); | |||
pair pHprime = 2*dHprime-pH; | |||
pair dAprime = foot(pA, pB, pC); | |||
pair pAprime = 2*dAprime-pA; | |||
pair dNprime = foot(pN, pB, pC); | |||
pair pNprime = 2*dNprime-pN; | |||
draw( | draw(pA--pB--pC--cycle); | ||
draw(unitcircle, blue); | |||
draw(pH--pHprime, magenta); | |||
draw(pA--pD, red); | |||
draw(circumcircle(pB, pH, pC), blue); | |||
draw(pA--pH, blue); | |||
draw(pA--pN, magenta); | |||
draw(pA--pO, blue); | |||
draw(pD--pNprime, magenta); | |||
dot("\(A\)", pA, NW); | |||
dot("\(B\)", pB, W); | |||
dot("\(C\)", pC, E); | |||
dot("\(O\)", pO, SW, blue); | |||
dot("\(H\)", pH, SW, blue); | |||
dot("\(N\)", pN, NE, magenta); | |||
dot("\(M\)", pM, S, red); | |||
dot("\(D\)", pD, S, red); | |||
dot("\(H'\)", pHprime, SW, magenta); | |||
dot("\(A'\)", pAprime, SW); | |||
dot("\(N'\)", pNprime, S, magenta); | |||
</asy> | |||
(original diagram by [[User:integralarefun|integralarefun]]) | |||
It's well known that the reflection of <math>H</math> across <math>\overline{BC}</math>, <math>H'</math>, lies on <math>(ABC)</math>. Then <math>(BHC)</math> is just the reflection of <math>(BH'C)</math> across <math>\overline{BC}</math>, which is equivalent to the reflection of <math>(ABC)</math> across <math>\overline{BC}</math>. Reflect points <math>A</math> and <math>N</math> across <math>\overline{BC}</math> to points <math>A'</math> and <math>N'</math>, respectively. Then <math>N'</math> is the midpoint of minor arc <math>\overarc{BC}</math>, so <math>A, D, N'</math> are collinear in that order. It suffices to show that <math>\angle AA'N'=\angle ADO</math>. | |||
<b>Claim:</b> <math>\triangle AA'N' \sim \triangle ADO</math>. The proof easily follows. | |||
/ | <b>Proof:</b> Note that <math>\angle BAA'=\angle CAO=90^{\circ}-\angle ABC</math>. Then we have <math>\angle A'AN'=\angle BAD-\angle BAA'=\angle CAD-\angle CAO=\angle DAO</math>. So, it suffices to show that <cmath>\frac{AA'}{AN'}=\frac{AD}{AO}\rightarrow AA'\cdot AO=AN'\cdot AD.</cmath> Notice that <math>\triangle ABA' \sim \triangle AOC</math>, so that <cmath>\frac{AB}{AA'}=\frac{AO}{AC}\rightarrow AA'\cdot AO=AB\cdot AC.</cmath> Therefore, it suffices to show that <cmath>AB\cdot AC=AN'\cdot AD\rightarrow \frac{AB}{AN'}=\frac{AD}{AC}.</cmath> But it is easy to show that <math>\triangle BAN'\sim \triangle DAC</math>, implying the result. <math>\blacksquare</math> | ||
A = dir 130 B = dir 220 C = dir 320 unitcircle | ==Solution 2== | ||
<asy> | |||
size(9cm); | |||
pair A = dir(130); | |||
pair B = dir(220); | |||
pair C = dir(320); | |||
draw(unitcircle, lightblue); | |||
P = dir -90 Q = dir 90 D = extension A P B C | pair P = dir(-90); | ||
pair Q = dir(90); | |||
pair D = extension(A, P, B, C); | |||
pair O = origin; | |||
pair M = extension(B, C, O, P); | |||
pair N = 2*M-P; | |||
A--B--C--cycle lightblue A--P--Q lightblue A--N--D--O--A lightblue | draw(A--B--C--cycle, lightblue); | ||
draw(A--P--Q, lightblue); | |||
draw(A--N--D--O--A, lightblue); | |||
A--D--N--O--cycle | draw(A--D--N--O--cycle, red); | ||
dot("$A$", A, dir(A)); | |||
dot("$B$", B, dir(B)); | |||
dot("$C$", C, dir(C)); | |||
dot("$P$", P, dir(P)); | |||
dot("$Q$", Q, dir(Q)); | |||
dot("$D$", D, dir(225)); | |||
dot("$O$", O, dir(315)); | |||
dot("$M$", M, dir(315)); | |||
dot("$N$", N, dir(315)); | |||
</asy> | |||
Suppose ray <math>OM</math> intersects the circumcircle of <math>BHC</math> at <math>N'</math>, and let the foot of the A-altitude of <math>ABC</math> be <math>E</math>. Note that <math>\angle BHE=90-\angle HBE=90-90+\angle C=\angle C</math>. Likewise, <math>\angle CHE=\angle B</math>. So, <math>\angle BHC=\angle BHE+\angle CHE=\angle B+\angle C</math>. | Suppose ray <math>OM</math> intersects the circumcircle of <math>BHC</math> at <math>N'</math>, and let the foot of the A-altitude of <math>ABC</math> be <math>E</math>. Note that <math>\angle BHE=90-\angle HBE=90-90+\angle C=\angle C</math>. Likewise, <math>\angle CHE=\angle B</math>. So, <math>\angle BHC=\angle BHE+\angle CHE=\angle B+\angle C</math>. | ||
Latest revision as of 11:05, 7 June 2024
Problem
Let
and
be the circumcenter and the orthocenter of an acute triangle
. Points
and
lie on side
such that
and
. Ray
intersects the circumcircle of triangle
in point
. Prove that
.
Solution 1
(original diagram by integralarefun)
It's well known that the reflection of
across
,
, lies on
. Then
is just the reflection of
across
, which is equivalent to the reflection of
across
. Reflect points
and
across
to points
and
, respectively. Then
is the midpoint of minor arc
, so
are collinear in that order. It suffices to show that
.
Claim:
. The proof easily follows.
Proof: Note that
. Then we have
. So, it suffices to show that
Notice that
, so that
Therefore, it suffices to show that
But it is easy to show that
, implying the result.
Solution 2
Suppose ray
intersects the circumcircle of
at
, and let the foot of the A-altitude of
be
. Note that
. Likewise,
. So,
.
is cyclic, so
. Also,
. These two angles are on different circles and have the same measure, but they point to the same line
! Hence, the two circles must be congruent. (This is also a well-known result)
We know, since
is the midpoint of
, that
is perpendicular to
.
is also perpendicular to
, so the two lines are parallel.
is a transversal, so
. We wish to prove that
, which is equivalent to
being cyclic.
Now, assume that ray
intersects the circumcircle of
at a point
. Point
must be the midpoint of
. Also, since
is an angle bisector, it must also hit the circle at the point
. The two circles are congruent, which implies
NDP is isosceles. Angle ADN is an exterior angle, so
.
Assume WLOG that
. So,
.
In addition,
. Combining these two equations,
.
Opposite angles sum to
, so quadrilateral
is cyclic, and the condition is proved.
-william122
See also
| 2017 USAJMO (Problems • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAJMO Problems and Solutions | ||