Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

1999 AHSME Problems/Problem 1: Difference between revisions

1=2 (talk | contribs)
No edit summary
Scthecool (talk | contribs)
mNo edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 2: Line 2:
<math>1 - 2 + 3 -4 + \cdots - 98 + 99 = </math>
<math>1 - 2 + 3 -4 + \cdots - 98 + 99 = </math>


<math> \mathrm{(A) \ -50 } \qquad \mathrm{(B) \ -49 } \qquad \mathrm{(C) \ 0 } \qquad \mathrm{(D) \ 49 } \qquad \mathrm{(E) \ 50 }  </math>
<math> \mathrm{\textbf{(A)} \ -50 } \qquad \mathrm{\textbf{(B)} \ -49 } \qquad \mathrm{\textbf{(C)} \ 0 } \qquad \mathrm{\textbf{(D)} \ 49 } \qquad \mathrm{\textbf{(E)} \ 50 }  </math>


== Solution ==
== Solution ==
=== Solution 1 ===
=== Solution 1 ===
If we group consecutive terms together, we get <math>(-1) + (-1) + \cdots + 99</math>, and since there are 49 pairs of terms the answer is <math>-49 + 99 = 50 \Rightarrow \mathrm{(E)}</math>.
If we group consecutive terms together, we get <math>(-1) + (-1) + \cdots + 99</math>, and since there are 49 pairs of terms the answer is <math>-49 + 99 = 50 \Rightarrow \mathrm{\textbf{(E)}}</math>.


=== Solution 2 ===
=== Solution 2 ===
( Similar to Solution 1 )
If we rearranged the terms, we get <math>1+3-2+5-4 \cdots + 99-98</math> then <math>1 + 1 + \cdots + 1 </math>, and since there are 49 pairs of terms and the <math>1</math> in the beginning the answer is <math>1+49 = 50 \Rightarrow \mathrm{\textbf(E)}</math>.
=== Solution 3 ===
Let <math>1 - 2 + 3 -4 + \cdots - 98 + 99 = S</math>.
Let <math>1 - 2 + 3 -4 + \cdots - 98 + 99 = S</math>.


Line 17: Line 21:
<math>2S=100-100+100-100\cdots +100=100</math>
<math>2S=100-100+100-100\cdots +100=100</math>


<math>S=50\Rightarrow \mathrm{(E)}</math>
<math>S=50\Rightarrow \mathrm{\textbf{(E)}}</math>
 
 
=== Solution 4 ===
We proceed with addition, 1 -2 + 3 -4.... Once done we find <math> \mathrm{\textbf{(E)}}</math>


== See also ==
== See also ==
Line 23: Line 31:


[[Category:Introductory Algebra Problems]]
[[Category:Introductory Algebra Problems]]
{{MAA Notice}}

Latest revision as of 20:35, 9 February 2024

Problem

$1 - 2 + 3 -4 + \cdots - 98 + 99 =$

$\mathrm{\textbf{(A)} \ -50 } \qquad \mathrm{\textbf{(B)} \ -49 } \qquad \mathrm{\textbf{(C)} \ 0 } \qquad \mathrm{\textbf{(D)} \ 49 } \qquad \mathrm{\textbf{(E)} \ 50 }$

Solution

Solution 1

If we group consecutive terms together, we get $(-1) + (-1) + \cdots + 99$, and since there are 49 pairs of terms the answer is $-49 + 99 = 50 \Rightarrow \mathrm{\textbf{(E)}}$.

Solution 2

( Similar to Solution 1 ) If we rearranged the terms, we get $1+3-2+5-4 \cdots + 99-98$ then $1 + 1 + \cdots + 1$, and since there are 49 pairs of terms and the $1$ in the beginning the answer is $1+49 = 50 \Rightarrow \mathrm{\textbf(E)}$.

Solution 3

Let $1 - 2 + 3 -4 + \cdots - 98 + 99 = S$.

Therefore, $S=99-98+97-\cdots -4+3-2+1$

We add:

$2S=100-100+100-100\cdots +100=100$

$S=50\Rightarrow \mathrm{\textbf{(E)}}$


Solution 4

We proceed with addition, 1 -2 + 3 -4.... Once done we find $\mathrm{\textbf{(E)}}$

See also

1999 AHSME (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination