Art of Problem Solving

2023 AMC 10A Problems/Problem 22: Difference between revisions

Andliu766 (talk | contribs)
No edit summary
Eevee9406 (talk | contribs)
redirect
Tag: New redirect
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Circle <math>C_1</math> and <math>C_2</math> each have radius <math>1</math>, and the distance between their centers is <math>\frac{1}{2}</math>. Circle <math>C_3</math> is the largest circle internally tangent to both <math>C_1</math> and <math>C_2</math>. Circle <math>C_4</math> is internally tangent to both <math>C_1</math> and <math>C_2</math> and externally tangent to <math>C_3</math>. What is the radius of <math>C_4</math>?
#redirect[[2023 AMC 12A Problems/Problem 18]]
 
<math>\textbf{(A) } \frac{1}{14} \qquad \textbf{(B) } \frac{1}{12} \qquad \textbf{(C) } \frac{1}{10} \qquad \textbf{(D) } \frac{3}{28} \qquad \textbf{(E) } \frac{1}{9}</math>
 
==Solution==
Connect the centers of <math>C_1</math> and <math>C_4</math>, and the centers of <math>C_3</math> and <math>C_4</math>. Let the radius of <math>C_4</math> be <math>r</math>. Then, from the auxillary lines, we get <math>(\frac{1}{4})^2 + (\frac{3}{4}+r)^2 = (1-r)^2</math>. Solving, we get <math>r = \boxed{\frac{3}{28}}</math>
 
-andliu766
 
 
== Video Solution 1 by OmegaLearn ==
https://youtu.be/jcHeJXs9Sdw

Latest revision as of 22:54, 9 November 2023