|
|
| (6 intermediate revisions by 4 users not shown) |
| Line 1: |
Line 1: |
| Circle <math>C_1</math> and <math>C_2</math> each have radius <math>1</math>, and the distance between their centers is <math>\frac{1}{2}</math>. Circle <math>C_3</math> is the largest circle internally tangent to both <math>C_1</math> and <math>C_2</math>. Circle <math>C_4</math> is internally tangent to both <math>C_1</math> and <math>C_2</math> and externally tangent to <math>C_3</math>. What is the radius of <math>C_4</math>?
| | #redirect[[2023 AMC 12A Problems/Problem 18]] |
| | |
| <math>\textbf{(A) } \frac{1}{14} \qquad \textbf{(B) } \frac{1}{12} \qquad \textbf{(C) } \frac{1}{10} \qquad \textbf{(D) } \frac{3}{28} \qquad \textbf{(E) } \frac{1}{9}</math>
| |
| | |
| | |
| == Video Solution 1 by OmegaLearn ==
| |
| https://youtu.be/jcHeJXs9Sdw
| |