|
|
| (4 intermediate revisions by 2 users not shown) |
| Line 1: |
Line 1: |
| ==Problem==
| | #redirect[[2023 AMC 12A Problems/Problem 9]] |
| A square of area <math>2</math> is inscribed in a square of area <math>3</math>, creating four congruent triangles, as shown below. What is the ratio of the shorter leg to the longer leg in the shaded right triangle?
| |
| <asy>
| |
| size(200);
| |
| defaultpen(linewidth(0.6pt)+fontsize(10pt));
| |
| real y = sqrt(3);
| |
| pair A,B,C,D,E,F,G,H;
| |
| A = (0,0);
| |
| B = (0,y);
| |
| C = (y,y);
| |
| D = (y,0);
| |
| E = ((y + 1)/2,y);
| |
| F = (y, (y - 1)/2);
| |
| G = ((y - 1)/2, 0);
| |
| H = (0,(y + 1)/2);
| |
| fill(H--B--E--cycle, gray);
| |
| draw(A--B--C--D--cycle);
| |
| draw(E--F--G--H--cycle);
| |
| </asy>
| |
| | |
| <math>\textbf{(A) }\frac15\qquad\textbf{(B) }\frac14\qquad\textbf{(C) }2-\sqrt3\qquad\textbf{(D) }\sqrt3-\sqrt2\qquad\textbf{(E) }\sqrt2-1</math>
| |
| | |
| ==Solution==
| |
| | |
| Note that each side length is <math>\sqrt{2}</math> and <math>\sqrt{3}.</math> Let the shorter side of our triangle be <math>x</math>, thus the longer leg is <math>\sqrt{3}-x</math>. Hence, by the Pythagorean Theorem, we have <cmath>(x-\sqrt{3})^2+x^2=2</cmath>
| |
| <cmath>2x^2-2x\sqrt{3}+1=0</cmath>.
| |
| | |
| By the quadratic formula, we find <math>x=\frac{\sqrt{3}\pm1}{2}</math>. Hence, our answer is <math>\frac{\sqrt{3}-1}{\sqrt{3}+1}=\boxed{\textbf{(C) }2-\sqrt3}.</math>
| |
| | |
| ~SirAppel ~ItsMeNoobieboy
| |
| | |
| ==See Also==
| |
| {{AMC10 box|year=2023|ab=A|num-b=10|num-a=12}}
| |
| {{MAA Notice}}
| |