1998 USAMO Problems/Problem 3: Difference between revisions
Created page with '1998 USAMO Problem #1 Problem: Let <math>a_0,\cdots a_n</math> be real numbers in the interval <math>(0,\frac {\pi}{2})</math> such that <math>\tan{(a_0 - \frac {\pi}{4})} + \t…' |
|||
| (10 intermediate revisions by 7 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem == | |||
Let <math>a_0,\cdots a_n</math> be real numbers in the interval <math>\left(0,\frac {\pi}{2}\right)</math> such that | |||
<cmath>\tan{\left(a_0 - \frac {\pi}{4}\right)} + \tan{\left(a_1 - \frac {\pi}{4}\right)} + \cdots + \tan{\left(a_n - \frac {\pi}{4}\right)}\ge n - 1</cmath> | |||
Prove that <math>\tan{\left(a_0\right)}\tan{\left(a_1\right)}\cdots \tan{\left(a_n\right)}\ge n^{n + 1}</math>. | |||
Let <math>a_0,\cdots a_n</math> be real numbers in the interval <math>(0,\frac {\pi}{2})</math> such that | |||
< | |||
Prove that <math>\tan{(a_0)}\tan{(a_1)}\cdots \tan{(a_n)}\ge n^{n + 1}</math>. | |||
== Solution == | |||
Let <math>y_i = \tan{(a_i - \frac {\pi}{4})}</math>, where <math>0\le i\le n</math>. Then we have | Let <math>y_i = \tan{(a_i - \frac {\pi}{4})}</math>, where <math>0\le i\le n</math>. Then we have | ||
| Line 17: | Line 13: | ||
By AM-GM, | By AM-GM, | ||
<cmath>\begin{align*} | |||
\frac {1}{n}\sum_{j\neq i}{(1 - y_j)} &\geq \prod_{j\neq i}{(1 - y_j)^{\frac {1}{n}}}\\ | |||
\frac {1 + y_i}{n} &\geq \prod_{j\neq i}{(1 - y_j)^{\frac {1}{n}}}\\ | |||
\prod_{i = 0}^n\frac{1 + y_i}{n} &\geq \prod_{i = 0}^{n} {\prod_{j\neq i} {(1 - y_j)}^{\frac {1}{n}}}\\ | |||
\prod_{i = 0}^n\frac {1 + y_i}{n} &\geq \prod_{i = 0}^n{(1 - y_i)}\\ | |||
\prod_{i = 0}^n\frac {1 + y_i}{1 - y_i} &\geq \prod_{i = 0}^n{n}\\ | |||
\prod_{i = 0}^n\frac {1 + y_i}{1 - y_i} &\geq n^{n + 1} | |||
\end{align*}</cmath> | |||
Note that by the addition formula for tangents, <cmath>\tan{(a_i)} = \tan{[(a_i - \frac {\pi}{4}) + \frac {\pi}{4}]} = \frac {1 + \tan{(a_i - \frac {\pi}{4})}}{1 - \tan{(a_i - \frac {\pi}{4})}} = \frac {1 + y_i}{1 - y_i}</cmath>. | |||
So <math>\prod_{i = 0}^n{\frac {1 + y_i}{1 - y_i}} = \tan{(a_0)}\tan{(a_1)}\cdots \tan{(a_n)}\ge n^{n + 1}</math>, as desired. <math>\blacksquare</math> | |||
==See Also== | |||
{{USAMO newbox|year=1998|num-b=2|num-a=4}} | |||
[[Category:Olympiad Trigonometry Problems]] | |||
[[Category:Olympiad Algebra Problems]] | |||
[[Category:Olympiad Inequality Problems]] | |||
{{MAA Notice}} | |||
Latest revision as of 12:31, 23 August 2023
Problem
Let
be real numbers in the interval
such that
Prove that
.
Solution
Let
, where
. Then we have
By AM-GM,
Note that by the addition formula for tangents,
.
So
, as desired.
See Also
| 1998 USAMO (Problems • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination