Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2019 AMC 10B Problems/Problem 2: Difference between revisions

Ahsi (talk | contribs)
Created page with "hey guys"
 
Ericguo (talk | contribs)
 
(22 intermediate revisions by 18 users not shown)
Line 1: Line 1:
hey guys
{{duplicate|[[2019 AMC 10B Problems|2019 AMC 10B #2]] and [[2019 AMC 12B Problems|2019 AMC 12B #2]]}}
 
==Problem==
 
Consider the statement, "If <math>n</math> is not prime, then <math>n-2</math> is prime." Which of the following values of <math>n</math> is a counterexample to this statement?
 
<math>\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27</math>
 
==Solution==
 
Since a counterexample must be a value of <math>n</math> which is not prime, <math>n</math> must be composite, so we eliminate <math>\text{A}</math> and <math>\text{C}</math>. Now we subtract <math>2</math> from the remaining answer choices, and we see that the only time <math>n-2</math> is '''not''' prime is when <math>n = \boxed{\textbf{(E) }27}</math>.
 
~IronicNinja
 
minor edit (the inclusion of not) by AlcBoy1729
 
==Video Solution==
https://youtu.be/CgZnUftXoig
 
~Education, the Study of Everything
 
==See Also==
{{AMC10 box|year=2019|ab=B|num-b=1|num-a=3}}
{{AMC12 box|year=2019|ab=B|num-b=1|num-a=3}}
{{MAA Notice}}

Latest revision as of 09:23, 24 June 2023

The following problem is from both the 2019 AMC 10B #2 and 2019 AMC 12B #2, so both problems redirect to this page.

Problem

Consider the statement, "If $n$ is not prime, then $n-2$ is prime." Which of the following values of $n$ is a counterexample to this statement?

$\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27$

Solution

Since a counterexample must be a value of $n$ which is not prime, $n$ must be composite, so we eliminate $\text{A}$ and $\text{C}$. Now we subtract $2$ from the remaining answer choices, and we see that the only time $n-2$ is not prime is when $n = \boxed{\textbf{(E) }27}$.

~IronicNinja

minor edit (the inclusion of not) by AlcBoy1729

Video Solution

https://youtu.be/CgZnUftXoig

~Education, the Study of Everything

See Also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination