Art of Problem Solving

2007 AMC 8 Problems/Problem 18: Difference between revisions

m Reverted edits by Raina0708 (talk) to last revision by Savannahsolver
Tag: Rollback
Pi is 3.14 (talk | contribs)
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 8: Line 8:


<math>\mathrm{(A)}\ 3 \qquad \mathrm{(B)}\ 5 \qquad \mathrm{(C)}\ 6 \qquad \mathrm{(D)}\ 8 \qquad \mathrm{(E)}\ 10</math>
<math>\mathrm{(A)}\ 3 \qquad \mathrm{(B)}\ 5 \qquad \mathrm{(C)}\ 6 \qquad \mathrm{(D)}\ 8 \qquad \mathrm{(E)}\ 10</math>
==Video Solution==
https://youtu.be/7an5wU9Q5hk?t=2085




Line 21: Line 18:


Note that the ones and thousands digits are, added together, <math>8</math>. (and so on...) So the answer is <math>\boxed{\textbf{(D)}\ 8}</math>
Note that the ones and thousands digits are, added together, <math>8</math>. (and so on...) So the answer is <math>\boxed{\textbf{(D)}\ 8}</math>
This is a direct multlipication way.
This is a direct multiplication way.
 
==Video Solution by OmegaLearn==
https://youtu.be/7an5wU9Q5hk?t=2085
 
~ pi_is_3.14


==Video Solution by WhyMath==
==Video Solution by WhyMath==

Latest revision as of 04:43, 31 December 2022

Problem

The product of the two $99$-digit numbers

$303,030,303,...,030,303$ and $505,050,505,...,050,505$

has thousands digit $A$ and units digit $B$. What is the sum of $A$ and $B$?

$\mathrm{(A)}\ 3 \qquad \mathrm{(B)}\ 5 \qquad \mathrm{(C)}\ 6 \qquad \mathrm{(D)}\ 8 \qquad \mathrm{(E)}\ 10$


Solution

We can first make a small example to find out $A$ and $B$. So,

$303\times505=153015$

The ones digit plus thousands digit is $5+3=8$.

Note that the ones and thousands digits are, added together, $8$. (and so on...) So the answer is $\boxed{\textbf{(D)}\ 8}$ This is a direct multiplication way.

Video Solution by OmegaLearn

https://youtu.be/7an5wU9Q5hk?t=2085

~ pi_is_3.14

Video Solution by WhyMath

https://youtu.be/_goaFuScO6M

~savannahsolver

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing