1977 USAMO Problems/Problem 3: Difference between revisions
| (One intermediate revision by the same user not shown) | |||
| Line 5: | Line 5: | ||
Given the roots <math>a,b,c,d</math> of the equation <math>x^{4}+x^{3}-1=0</math>. | Given the roots <math>a,b,c,d</math> of the equation <math>x^{4}+x^{3}-1=0</math>. | ||
First, Vieta's relations give <math>a+b+c+d = -1 , ab+ac+ad+bc+bd+cd=0, abcd = -1</math>. | First, Vieta's relations give <math>a+b+c+d = -1 , ab+ac+ad+bc+bd+cd=0, abc+abd+acd+bcd=0, abcd = -1</math>. | ||
Then <math>cd=-\frac{1}{ab}</math> and <math>c+d=-1-(a+b)</math>. | Then <math>cd=-\frac{1}{ab}</math> and <math>c+d=-1-(a+b)</math>. | ||
| Line 11: | Line 11: | ||
The other coefficients give <math>ab+(a+b)(c+d)+cd = 0</math> or <math>ab+(a+b)[-1-(a+b)]-\frac{1}{ab}=0</math>. | The other coefficients give <math>ab+(a+b)(c+d)+cd = 0</math> or <math>ab+(a+b)[-1-(a+b)]-\frac{1}{ab}=0</math>. | ||
Let <math>a+b=s</math> and <math>ab=p</math> | Let <math>a+b=s</math> and <math>ab=p</math>. | ||
Thus, <math>0=ab+ac+ad+bc+bd+cd=p+s(-1-s)-\frac{1}{p}</math>. (1) | |||
Also, <math>0=abc+abd+acd+bcd=p(-1-s)-s/p</math>. | |||
Solving <math>s= \frac{ | Solving this equation for <math>s</math>, <math>s= \frac{-p^2}{p^2+1}</math>. | ||
Substituting into (1): <math>\frac{p^{6}+p^{4}+p^{3}-p^{2}-1}{p(p^2+1)^2}=0</math>. | |||
Conclusion: <math>p =ab</math> is a root of <math>x^{6}+x^{4}+x^{3}-x^{2}-1=0</math>. | Conclusion: <math>p =ab</math> is a root of <math>x^{6}+x^{4}+x^{3}-x^{2}-1=0</math>. | ||
Latest revision as of 21:46, 20 September 2022
Problem
If
and
are two of the roots of
, prove that
is a root of
.
Solution
Given the roots
of the equation
.
First, Vieta's relations give
.
Then
and
.
The other coefficients give
or
.
Let
and
.
Thus,
. (1)
Also,
.
Solving this equation for
,
.
Substituting into (1):
.
Conclusion:
is a root of
.
See Also
| 1977 USAMO (Problems • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing