2008 AMC 12B Problems/Problem 9: Difference between revisions
No edit summary |
No edit summary |
||
| (10 intermediate revisions by 6 users not shown) | |||
| Line 1: | Line 1: | ||
==Problem | ==Problem== | ||
Points <math>A</math> and <math>B</math> are on a circle of radius <math>5</math> and <math>AB = 6</math>. Point <math>C</math> is the midpoint of the minor arc <math>AB</math>. What is the length of the line segment <math>AC</math>? | Points <math>A</math> and <math>B</math> are on a circle of radius <math>5</math> and <math>AB = 6</math>. Point <math>C</math> is the midpoint of the minor arc <math>AB</math>. What is the length of the line segment <math>AC</math>? | ||
<math>\textbf{(A)}\ \sqrt {10} \qquad \textbf{(B)}\ \frac {7}{2} \qquad \textbf{(C)}\ \sqrt {14} \qquad \textbf{(D)}\ \sqrt {15} \qquad \textbf{(E)}\ 4</math> | <math>\textbf{(A)}\ \sqrt {10} \qquad \textbf{(B)}\ \frac {7}{2} \qquad \textbf{(C)}\ \sqrt {14} \qquad \textbf{(D)}\ \sqrt {15} \qquad \textbf{(E)}\ 4</math> | ||
==Solution== | ==Solutions== | ||
Let <math>\alpha</math> be the angle that subtends the arc AB. By the law of cosines, | ===Solution 1=== | ||
<math>6^2=5^2+5^2-2 | Let <math>\alpha</math> be the angle that subtends the arc <math>AB</math>. By the law of cosines, | ||
<math>6^2=5^2+5^2-2\cdot 5\cdot 5\cos(\alpha)</math> implies <math>\cos(\alpha) = 7/25</math>. | |||
<math>\alpha = cos^{- | The [[Trigonometric_identities#Half_Angle_Identities | half-angle formula]] says that | ||
<math>\cos(\alpha/2) = \frac{\sqrt{1+\cos(\alpha)}}{2} = \sqrt{\frac{32/25}{2}} = \sqrt{\frac{16}{25}} = \frac{4}{5}</math>. The law of cosines tells us <math>AC = \sqrt{5^2+5^2-2\cdot 5\cdot 5\cdot \frac{4}{5}} = \sqrt{50-50\frac{4}{5}} = \sqrt{10}</math>, which is answer choice <math>\boxed{\text{A}}</math>. | |||
===Solution 2=== | |||
<math> | Define <math>D</math> as the midpoint of line segment <math>\overline{AB}</math>, and <math>O</math> the center of the circle. Then <math>O</math>, <math>C</math>, and <math>D</math> are collinear, and since <math>D</math> is the midpoint of <math>AB</math>, <math>m\angle ODA=90\deg</math> and so <math>OD=\sqrt{5^2-3^2}=4</math>. Since <math>OD=4</math>, <math>CD=5-4=1</math>, and so <math>AC=\sqrt{3^2+1^2}=\sqrt{10} \rightarrow \boxed{\text{A}}</math>. | ||
<math> | |||
<math> | |||
<math>AC = \sqrt{10}</math> | |||
<center><asy> | |||
pen d = linewidth(0.7); pathpen = d; pointpen = black; pen f = fontsize(9); | |||
path p = CR((0,0),5); | |||
pair O = (0,0), A=(5,0), B = IP(p,CR(A,6)), C = IP(p,CR(A,3)), D=IP(A--B,O--C); | |||
D(p); D(MP("A",A,E)--D(MP("O",O))--MP("B",B,NE)--cycle); D(A--MP("C",C,ENE),dashed+d); D(O--C,dashed+d); D(rightanglemark(O,D(MP("D",D,W)),A)); MP("5",(A+O)/2); MP("3",(A+D)/2,SW); | |||
</asy></center> | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2008|ab=B|num-b= | {{AMC12 box|year=2008|ab=B|num-b=8|num-a=10}} | ||
{{MAA Notice}} | |||
Latest revision as of 12:48, 15 February 2021
Problem
Points
and
are on a circle of radius
and
. Point
is the midpoint of the minor arc
. What is the length of the line segment
?
Solutions
Solution 1
Let
be the angle that subtends the arc
. By the law of cosines,
implies
.
The half-angle formula says that
. The law of cosines tells us
, which is answer choice
.
Solution 2
Define
as the midpoint of line segment
, and
the center of the circle. Then
,
, and
are collinear, and since
is the midpoint of
,
and so
. Since
,
, and so
.
![[asy] pen d = linewidth(0.7); pathpen = d; pointpen = black; pen f = fontsize(9); path p = CR((0,0),5); pair O = (0,0), A=(5,0), B = IP(p,CR(A,6)), C = IP(p,CR(A,3)), D=IP(A--B,O--C); D(p); D(MP("A",A,E)--D(MP("O",O))--MP("B",B,NE)--cycle); D(A--MP("C",C,ENE),dashed+d); D(O--C,dashed+d); D(rightanglemark(O,D(MP("D",D,W)),A)); MP("5",(A+O)/2); MP("3",(A+D)/2,SW); [/asy]](http://latex.artofproblemsolving.com/7/2/f/72fbe8b90fcde66500984b26ba2b38b0f7765119.png)
See Also
| 2008 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 8 |
Followed by Problem 10 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing