1972 IMO Problems/Problem 5: Difference between revisions
No edit summary |
|||
| (3 intermediate revisions by 3 users not shown) | |||
| Line 7: | Line 7: | ||
Let <math>u>0</math> be the least upper bound for <math>|f(x)|</math> for all <math>x</math>. So, <math>|f(x)| \leq u</math> for all <math>x</math>. Then, for all <math>x,y</math>, | Let <math>u>0</math> be the least upper bound for <math>|f(x)|</math> for all <math>x</math>. So, <math>|f(x)| \leq u</math> for all <math>x</math>. Then, for all <math>x,y</math>, | ||
<math>2u | <math>2u \geq |f(x+y)+f(x-y)| = |2f(x)g(y)|=2|f(x)||g(y)|</math> | ||
Therefore, <math>u \geq |f(x)||g(y)|</math>, so <math>|f(x)| \leq u/|g(y)|</math>. | Therefore, <math>u \geq |f(x)||g(y)|</math>, so <math>|f(x)| \leq u/|g(y)|</math>. | ||
Since <math>u</math> is the least upper bound for <math>|f(x)|</math>, <math>u/|g(y)| \geq u</math>. Therefore, <math>|g(y)| \leq 1</math>. | Since <math>u</math> is the least upper bound for <math>|f(x)|</math>, <math>u/|g(y)| \geq u</math>. Therefore, <math>|g(y)| \leq 1</math>. | ||
Borrowed from [http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln725.html] | |||
== See Also == {{IMO box|year=1972|num-b=4|num-a=6}} | |||
[[Category:Olympiad Algebra Problems]] | |||
[[Category:Functional Equation Problems]] | |||
Latest revision as of 14:39, 29 January 2021
Let
and
be real-valued functions defined for all real values of
and
, and satisfying the equation
for all
. Prove that if
is not identically zero, and if
for all
, then
for all
.
Solution
Let
be the least upper bound for
for all
. So,
for all
. Then, for all
,
Therefore,
, so
.
Since
is the least upper bound for
,
. Therefore,
.
Borrowed from [1]
See Also
| 1972 IMO (Problems) • Resources | ||
| Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
| All IMO Problems and Solutions | ||